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Abstract

Euler's theorem states that any sequence of finite rotations

of a rigid body can be described as a single rotation of the body

about a fixed axis in three dimensional Euclidean space. The

usual statement of the theorem in the literature cannot be

extended to Euclidean spaces of other dimensions. Equivalent

formulations of the theorem are given in this paper and proven in

a way which does not limit them to the three dimensional

Euclidean space. Thus, the equivalent theorems hold in other

dimensions. The proof of one formulation presents an algorithm

which shows how to compute an angular-difference matrix that

represents a single rotation which is equivalent to the sequence

of rotations that have generated the final n-D orientation. This

algorithm results also in a constant angular-velocity which, when

applied to the initial orientation, yields eventually the final

orientation regardless of what angular velocity generated the

latter. Finally, the extension of the theorem is demonstrated in

a four dimensional numerical example.
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I. EULER" S THEOREM

In 1775 Euler published a paper on the rotation of rigid

bodies [I]. In that paper, which was written in Latin, he

Theorema.

_._omodocunque fphaera circa cen:rura fuum conuer-
tatur , femper a_gnari potefl diameter, cuiuJ"
dire_io in fit_ translato conueniat cure fitg
initiali.

Fiq.l: Euler's theorem on the rotation of a rigid

body as it appeared in the 1775 publication.

presented the theorem whose photograph is shown in fig. i. The

theorem states the following:

In whatever way a sphere is rotated about its center, it is

always possible to reckon a diameter about which a rotation

brings the sphere into coincidence with its original
location.

A modern formulation of this theorem states [2]:

A body set of axes at any time t can always be obtained by

a single rotation of the initial set of axes.

We prefer to formulate this theorem as follows:

Regardless of the way a coordinate system is rotated from

its original orientation, it is always possible to find a

fixed axis in space about which a single rotation of the
initial coordinates ends at the final orientation.
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Euler's theorem serves as a cornerstone in attitude

A

determination [3-9] and tracking [7,9,10]• In particular, if n is

a unit vector along the axis of rotation and e is the angle by

which the initial coordinate system has to be rotated in order to

A

coincide with the final one, then D(n,e), the transformation

matrix from the initial to the final coordinate system, is given

by [7-10]

A AA A

D(n,0) = Icos0 + (l-cose)nn T - sinO[nx] (i)

where I denotes the identity matrix, T denotes the matrix

A A

transpose and [nx] denotes the cross product matrix of n. The

relationship formulated in (i) can also be expressed as follows

^ -[ex]D(n,e) = e - (2)

where
A

= ne. The rate of change of the vector quantity _e as a

function of w, the angular velocity at which the coordinate

system rotates, is given by [9,10]

• 1
_e(t) = _w(t) + re(t)x_w(t) +

Z

2-8 (t) cot[e (t)/2 ]

2e(t) 2
8(t) x[_e (t) xw_(t) ]

(3)

II. ALTERNATE FORMULATIONS O_FF EULER'S THEOREM

Angular-matrix {discrete) formulation

Denote the skew-symmetric matrix [ex] by O; that is,

e = [ex] (4)
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where the expliclt expression for e is:

e B

0 -e 3 e 2

e 3 o -e 1

-e 2 e I o

(5)

Equation (2) can be written as

= e-e (6)

Let the initial orientation of a certain coordinate system with

respect to some reference system be expressed by the attitude

matrix DO • Suppose now that this coordinate system is rotated

from its initial orientation by the sequence of rotations _I, _2,

• '', _k" Denote the cross product matrices which correspond to

_I, _2, .... , _k by i I, _2, .... , _k respectively. Then, in view

of (6), the attitude matrix that transforms the reference

coordinate system to the final one, and which expresses the

orientation of that system, is given by

Df - e-ek .... e -e2 e -el Do
(7)

On the other hand

-ef (8)
Df = e D o

However

ef _ ek+ .... +e2+e I (9)

We realize that the equivalence between (7) and (8) is another

expression of Euler'$ theorem. We can, then, formulate Euler's
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theorem also as follows:

Regardless of the way a coordinate system is rotated from

its original orientation, it is always possible to express

the final orientation of the system by the attitude matrix

Df where

-ef
Df = e D o

and ef is a skew-symmetric matrix.

We call this formulation discrete because the rotation expressed

by ef is equivalent to the discrete k rotations expressed by the

individual e i (i=i,2, .... , k) matrices.

Anqular-rate (continuous) formulation

Euler's theorem gave rise to (i) and (3) which indicate how to

find the orientation of a coordinate system, at any given time

tf, with respect to its initial orientation at time t o if w(t),

the history of its rate of rotation, is known for to<t<tf;

namely, w(t) is used in (3) to solve for 8(t) and then, that

solution is used in (I) to obtain the required orientation

specified by D(tf). The attitude matrix D(tf) can be computed

in yet another way, since the rate of change of D(t) as a

function Jf E(t) is given by the well known matrix differential

equation

D(t) =- [w(t)x]D(t) (I0)

The matrix [w(t)x] is defined on the components of w(t) when the

latter is resolved in the changing (final) coordinate system. We

also denote this matrix by W(t); that is,
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W(t) = [w(t)x] (ii)

Hence (i0) can be written also as

D(t) = - W(t)D(t) (12)

The explicit expression for W(t) ( or [w(t)x] ) is given by the

skew-symmetric matrix:

W(t) =

m

0 -w 3 (t) w 2 (t)

w 3 (t) 0 -w I (t)

-w 2 (t) w I (t) 0

(13)

There is, then, an equivalence between the pair (I) and (3) on

the one hand, and (12) on the other hand.

Euler's theorem states, basically, that there always exists a

vector 8(tf) which specifies the orientation regardless of

which E(t) generated that e(tf). Consequently, any w(t) which

satisfies the following two conditions, rotates the initial

coordinate system into the same orientation

w(t) ^
= n (14.a)

w(t)

_t_(t) dt = e(tf) (14.b)

t%

While the truth of the last proposition is self evident, it can

also be easily verified by solving (3) for any angular rate w(t)

which satisfies conditions (14). Since any w(t) which satisfies

(14) rotates the initial coordinates into the same orientation,
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then certainly the constant angular rate vector specified by

_8(tf)
w = (15)

tf-t o

rotates the initial coordinates into the same orientation and

since according to Euler's theorem such 8(tf) always exists, then

such constant w exists too. Finally, since such a constant

exists then, following (4) and (ii), there also exists a

corresponding constant matrix, W,

w

1

W = tf-to ef (16)

which when used in solving (12), yields the D(tf) that

corresponds to e(tf). Therefore, in view of the equivalence

between the pair (i) and (3) on the one hand, and (12) on the

other hand, we can phrase an equivalent formulation of Euler's

theorem as follows:

Regardless of what matrix W(t) generated D(tf), it is
always possible to find a constant matrix W whlch generates

the same D(tf).

We call this formulation continuous because it relates to the

continuous change of the orientation as a result of the existence

of an angular rate at which the orientation changes.

III. REPRESENTATION OF _OTATIONS IN n-D

Denote the dimension of an Euclidean space by n. The rotation

matrix in n-D, being a square matrix, consists of n 2 elements.
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However, the orthogonality of the matrix imposes (n+l)n/2

constraints on it. Consequently a rotation matrix in n-D has only

m=(n-l)n/2 independent parameters. That is, a rotation matrix in

n-D is defined by exactly m=(n-l)n/2 parameters. Consider now the

3-D rotation. As indicated by (I) and indeed as stated by Euler

[i,ii] the vector 8(tf) in its three components contains the

necessary and sufficient information for specifying the 3-D

rotation. Similarly the orthogonal rotation matrix D(tf) contains

three independent parameters although it has nine elements. So

the 3-D case is unique in that n=m and the rotation can be

described by either a vector or a matrix. In all other

dimensions, though, n_m and since m parameters are needed to

define the rotation, a vector with its n elements cannot

specify a rotation. Rotation matrices though, with their m

independent parameters, do specify the rotation. As a

consequence of this discussion, it is concluded that the

original version of Euler's theorem or any of its variants

presented in Section I are not extendible to n-D while the

alternate formulation of Euler's theorem given in the preceding

section may be extended to n-D.

IV. EULER'S THEOREM IN n-D

In view of the conclusion drawn in the last section, the

general formulations of Euler's theorem in n-D are that given in

Section II. Let us first address the angular-matrix (discrete)

formulation and rephrase it in a more general frame by the

following theorem:
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Theorem 1: Given the arbitrary unltarymatrices Do-D(t o) and

Df=D(tf), then Df can always be expressed in the
form:

Df = e -e DO (17)

where 8 is a skew Hermitlan-matrlx.

Since the rotation matrix is orthogonal, the angular-matrix

formulation of Euler's theorem is a special case of this theorem.

Although the theorem is not new [see e.g. exercise 4 on p. 346 of

ref. 12], for the sake of completeness, we present here a proof

of the theorem.

Proof: Define the unitary matrix

+ (is)D = DfD o

where + denotes the conjugate transpose of a matrix. Since D is

unitary, it is also normal and as such it has n orthogonal

eigenvectors (see theorem A1 in the Appendix). Define a matrix V

whose columns are the eigenvectors of D. Then V is unitary. Since

the eigenvectors of D form an orthonormal set, then

D = V U V + (19)

where G is the diagonal matrix of the eigenvalues of D (see A2).

Now since D is unitary, its n eigenvalues gl,g2, ...... ,gn

lie on the unit circle of the complex plane (see A3); that is,

gi = eJ_i i=I,2, ... ,n

where j=(-l) I/2 and _i is the phase of the ith eigenvalue.

form a diagonal matrix

Let us

307



= diag(-_l,-_2 , .... ,-_n } (20)

Then, obviously,

G = e -j_ (21)

Next we define a constant matrix 8 as

8 = V j_ V + (22)

then (see A4)

e-8 e-V j_ V +_= - V e -j_ V + (23)

Substituting (21) into (23) we obtain

e -8 = V G V + (24)

A comparison between (24) and (19) yields

D = e -O (25)

Then from (18) and (25) we obtain

Df = e -8 D O

To complete the proof we still have to show that e is skew-

Hermitian. From (25)

D + = e -O+ (26)

Also (see A5)

D -I = e 8 (27)

but, since D is unitary
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D + = D-I

therefore the right hand side of (26) is equal to that of (27),

consequently

e+ = -e

This completes the proof.

With Theorem 1 on-hand we are ready now to address the

angular-rate (continuous) formulation of Euler's theorem. Here

too we rephrase the latter in a more general frame as follows:

Theorem 2: Given the arbitrary unitary matrices Do=D(to) and

Df=D(tf), then Df can always be obtained as a
solution of (12) with the initial condition D o

where W is a constant skew-Hermitian matrix.

Note that due to the orthogonality of the rotation matrix, the

angular-rate formulation of Euler's theorem constitutes a special

case of the last theorem. The following proof of the latter is

based on the former theorem.

Proof: From Theorem 1

Df = e -8 D o

On the other hand, the solution (12) when W is constant is

-W (to-t f )
Df = e D o

the equality of these yields

1
W = e (28)

tf-t o

that is; no matter what W(t) generated Df, we can always find a
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constant W according to (28) for which the solution of (12) with

the initial condition Do yields Df at tf. Since e is skew-

Hermitian then, from (28), W is skew-Hermitian too. This

concludes the proof.

While we can consider W as an average velocity computed by

(28), we note however that W is not the average of W(t) ; that is,

1 t_t_(t) dt (29)W _ tf-to

This inequality is known in 3-D as non-commutativity. (Another

expression for the non-commutativity of rotations is the

inequality expressed in (9) ).

The above theorems extend Euler's theorem in two ways. First

they deal with the general n-D rather than the 3-D case and

secondly they extend Euler's theorem to the unitary (complex)

transformation. Euler's original formulation is, then, a special

case of the above theorems.

V. NUMERICAL EXAMPLE

To demonstrate the facts pointed out in the preceding section

we bring a fourth order example in which we show how Df which is

obtained as a result of the solution of (5) for a certain time

varying angular velocity matrix, W(t), can be obtained by the

solution of (5) with a constant angular velocity matrix, W.

For simplicity we deal with a special unitary matrix; namely,

with an orthogonal one. Also for simplicity and with no loss of
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generality, we choose Do=I. We first use the following time

varying W(t) to solve (12) from to=0. to tf=0.5 sec

-- O. 1.5t 1.5t 2 0.8t 3 --

W(t) =

-l.5t

-l.5t 2

-0.8t 3

0. -0.9sin(6.28t) -0.95/(I.-t)

0.9sin(6.28t) 0. 0.75

0.95/(i.-t) -0.75 0.

(30)

this yields the following solution at tf:

D f=

m

0.98130682

0.18388549

0.04691911

-0.03196326

-0.15805594

0.76180341

-0.10221727

-0.61985926

-0.08266215

0.21777062

0.96379421

0.12978307

m

-0.07226489

0.58173674

-0.24176631

0.77324588

The following eigenvector matrix of Df is obtained using the

EIGZF routine of the IMSL library:

V Iii038j01610038j0161087j0• 683+j 0. 0. 683+j 0. 0. 037-j 0. 177

170+90.184 -0.170-90.184 -0.052-90.659

056+90.664 0.056-90.664 -0.151+j0.181

m

0.687+j0.

0.037+j0.177

-0.052+90.659

-0.151-90.181_

The same routine also yields the following eigenvalues of Df:

gl = 0.7452+j0.6668 = e j0.7300

g2 = 0.7452-j0.6668 = e -j0"7300

g3 = 0.9949+j0.I012 = e j0.i013

g4 = 0"9949-90"1012 = e-J0"1013

The diagonal matrix j_ is computed according to (20) and used in

(22) and (28) to compute the following constant angular velocity

matrix:
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W lii00000000
--0[ 37147707

.12387442

04981448

0.37147707

0.00000000

0.35388342

1.31771209

0.12387442

-0.35388342

0.00000000

-0.40459905

0.04981448

-1.31771209

0.40459905

0.00000000

(31)

When now (12) is solved with the initial condition Do=I starting

at to=0. then, as expected, Df is the solution obtained at time

t=0.5. Finally, to demonstrate the inequality presented in (29)

we average W(t) given in (30). The resulting average is:

w(t)
tf-t o

dt = Iio"-0. 375

-0.125

-0.025

0.375 0.125 0.025

0. -0.573 -1.317

0.573 0. 0.750

1.317 -0.750 O.

Obviously the latter matrix differs from the constant angular

matrix, W, given in (31).

V. CONCLUSIONS

Euler's fundamental theorem on the ability to describe any

orientation of a rigid body as a single rotation and the various

known versions of this theorem cannot be directly extended to

other dimensions because all known formulations hinge on the

concept of axis of rotation which does not exist in dimensions

other than three. Nevertheless, when it is recognized that the

general n-D rotation is characterized not by an axis of rotation

but rather by an angular-difference matrix or by an angular

velocity matrix, Euler's theorem can be reformulated in 3-D in

ways which are equivalent to the other known formulations and

then the new formulations can be extended to n-D. In this work we

presented the new formulations in 3-D and then we proved that
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they hold for any dimension. One of the new formulations states

that no matter what was the sequence of rotations that resulted

in the final orientation, it is always possible to express the

rotation matrix as an exponential function of a skew-symmetric

angular-difference matrix. The other new formulation of Euler's

theorem states that no matter how the angular velocity matrix

changes as a function of time, we can always find a constant

angular-velocity matrix which will result in identical

orientation change over the same time interval.

The proof of the theorems supplied the algorithm needed to

compute the angular-difference matrix and the equivalent constant

angular-velocity matrix once the initial and the final attitudes

as well as the time interval are given. To demonstrate the new

formulations of the theorem and their extendibility to dimensions

other than 3 we used the algorithm to solve a 4-D example. The

example clearly demonstrates the ability to reach the same final

orientation using a constant angular velocity matrix.

Appendix

This appendix lists some known theorems which are used in the

proof of the theorem on the extended Euler theorem.

A!I: A set of n orthonormal eigenvectors can be found for an nxn

normal matrix. [See p. 76 of Ref. 13].

A2 : A matrix can be reduced to a diagonal matrix by a similarity

transformation if and only if a set of n linearly
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A_!=

A4:

A5:

independent eigenvectors can be found. [See p. 72 of Ref.

13].

The eigenvalues of a unitary matrix have absolute value i.

[See p. 129 in Ref. 14].

If A = TJT -I, then f(A) = Tf(J)T -I- [See p. 80 of Ref. 13].

If A = e B then A -I = e -B.

Proof: since B and -B commute, then eBe -B = e B-B = I

hence

Ae-B=I

thus

A-I=e-B
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